
The Review of Contemporary Scientific and Academic Studies
An International Multidisciplinary Online Journal

www.thercsas.com

ISSN: 2583-1380 Vol. 3 | Issue No. 10 | October 2023 Impact Factor: 4.736 (SJIF)

__
Building Data-Intensive Applications: Scalability, Performance and Availability
Vamsi Thatikonda and Hemavantha Rajesh https://doi.org/10.55454/rcsas.3.10.2023.004

1

Building Data-Intensive Applications: Scalability, Performance and Availability

Vamsi Thatikonda (vamsi.thatikonda@gmail.com), Software Engineer, Wright State University, USA
Hemavantha Rajesh Varma Mudunuri (mudunuri.hrv@gmail.com), Senior Systems Architect, Cumming, GA, USA

 Copyright: © 2023 by the authors. Licensee The RCSAS (ISSN: 2583-1380). This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution Non-Commercial 4.0 International
License. (https://creativecommons.org/licenses/by-nc/4.0/). Crossref/DOI: https://doi.org/10.55454/rcsas.3.10.2023.004

Abstract: This paper is aimed at exploring how to build a data-intensive application, having a specific focus over
scalability, performance and availability. As digital interactions rise, these applications play an important role in
communication for modern businesses. The synergistic relationship between these concepts has contributed towards
managing large amounts of data, address high-user load and prevent downtime. Design principles, optimization
techniques, database strategies, and real-world case studies, all provide best practices that can be followed when
creating a prospective application. Monitoring tools, cloud services and agile methodologies also need to be
integrated within the application to ensure proactive monitoring and swift response to incidents. However,
businesses need to continuously adapt their applications to remain resilient and responsive to evolving changes in
the market.

Keywords: Containerization, Data-Intensive Applications, Data Structures, Design Principles, Orchestration, SQL

Article History: Received: 18 Oct- 2023; Accepted: 25 Oct- 2023; Published/Available Online: 30 Oct- 2023;

Introduction

Due to the evolving digital era, data-intensive applications have become an important aspect of modern
business which motivates innovation while improving user experience. These applications range from e-
commerce platforms to social networks, handling large amounts of data on a daily basis, in real-time [1]. The
success of these applications mainly depends on scalability, performance and availability. Scalability helps
ensure that the application can be scaled to a larger user base when demanded, performance ensures swift
response and availability ensures that the application runs smoothly without disruptions [2]. This paper
therefore explores how a data-intensive application is built and maintained, understanding the relation that
exists between scalability, performance and availability for a reliable and smooth user interaction.

Key Concepts

Scalability as briefly mentioned earlier, is the ability of the application or system to accommodate increasing
traffic without faltering on performance. Performance implies providing a swift and efficient user experience
whereas availability implies that there is no disruption within the experience, curtailing downtime. All these
three concepts are in relation with each other within data-intensive applications. An application needs to be
scalable to manage increasing data volume and user demand, while delivering quality performance that is
consistent. It is also important for the application to be available to avoid any disruptions in service which
might lead to data loss or dissatisfied users [2]. Therefore, together these concepts form a symbiotic
relationship. The application might approach horizontal scaling by increasing its servers, improve
performance as load increases and ensure availability through redundancy and fault tolerance systems.

Challenges in Data-Intensive Applications

There are numerous challenges faced by a data-intensive application which can disrupt its systems. Storage
becomes constraint when dealing with large volumes of data on a daily basis, accompanied by retrieval and
processing operations as well [3]. With an increase in user-generated content, an effective and quickly
accessible data organization is essential. Moreover, as the load over the application increases, its
performance may deteriorate. Increased concurrent requests strain resources, resulting in a slow response
time and frustrated users. It is necessary for the application to maintain an optimal performance despite load
which requires intelligent load distribution and resource allocation [4]. Downtime is another concern for
applications where even a moment’s disruption can damage the experience of the user, reduce trust, and
incur financial losses. Downtime might be a consequence of hardware failure, software glitch, or even a
network issue, needing an adequate fault tolerance and disaster recovery system [5]. In order to address these
challenges, it is important that a scalable infrastructure, efficient data handling, load management and
proactive measures be considered.

The Review of Contemporary Scientific and Academic Studies
An International Multidisciplinary Online Journal

www.thercsas.com

ISSN: 2583-1380 Vol. 3 | Issue No. 10 | October 2023 Impact Factor: 4.736 (SJIF)

__
Building Data-Intensive Applications: Scalability, Performance and Availability
Vamsi Thatikonda and Hemavantha Rajesh https://doi.org/10.55454/rcsas.3.10.2023.004

2

Design Principles for Scalability

Numerous design principles go into the development of a data-intensive application. Horizontal and vertical
scaling can be used, which are both distinct approaches. Vertical scaling involves upgrading the hardware to
improve the capacity of a single serve which is suitable for incremental growth. In comparison, horizontal
scaling as mentioned earlier includes adding more servers for load distribution which is suitable for
exponential growth [6]. In case of independent scaling, it is important to decouple components. On breaking
down the application into loosely connected micro servers helps the team to scale individual parts without
affecting the overall system. This ensures agility and optimal resource utilization [7]. Meanwhile, load
balancing strategies also help by distributing the incoming requests equally across the servers, preventing
overload on a single server. These techniques include; round-robin, least connections, and dynamic
algorithms [8]. On implementations, application can easily be scaled, meeting growing demand, optimize
performance and ensure a smooth flow.

Optimizing Performance

Strategic optimization techniques can be used to ensure optimal performance in an application. Efficient
algorithms and data structures help ensure that the computational complexity of the application is less,
improving the speed of the system. It is therefore important to choose the right algorithm as it has a
subsequent impact over search, sorting and manipulation of data [9]. Caching mechanism is a useful strategy
to optimize performance which stores frequently accessed data in memory which reduces the processing time
required to retrieve data from slower storage system, improving the response time and reducing latency [10].
Asynchronous processing is another strategy which allows each task to execute independently without
blocking the main thread of the application because of which concurrent requests are handled efficiently,
reducing delays and improving the user experience [11]. Integrating these techniques into the system can
help provide a quicker response, handle high workloads, and reduce bottlenecks.

Ensuring Availability

For availability in data-intensive applications, redundancy and fault tolerance strategies can help protect
against failures on single nodes. Each critical component can be duplicated based on which the system if
disrupted can switch to a backup considering hardware failure or errors, mitigating downtime. Replication
and data distribution strategy is also beneficial for availability as it distributes the data across different
servers which protects against data loss which are a result of localized outages, improving the load balance.
As there are replicas of the data, applications can ensure their availability for its users, ensuring continues
access despite disruption [12].

Database Management

Data-intensive applications are entirely based on databases, managing large amounts of datasets daily. There
is however a choice between SQL and NoSQL databases which depends on the structure and requirements of
the application. SQL databases are more structured, having a strong consistently and are ideal for complex
queries. Meanwhile, NoSQL databases offer flexibility and horizontal scalability for unstructured or semi-
structured data [13]. Sharding and partitioning help improve the performance of the database. Sharding
includes distributing the data over multiple databases which improves the read/write operations. Partitioning
meanwhile, divides the data within a single database which improves the query performance [13]. Both of
these approaches help ensure that the data is managed efficient; supporting the application to scale itself and
deliver optimal performance irrespective of the fact that it has an incremental or exponential growth in data
volume.

Case Studies

Netflix is an interesting example of a data-intensive application which leverages the microservices
architecture to ensure scalable content delivery. It breaks down the application into manageable components,
which helps optimize the resource usage of Netflix, handling high traffic loads leading to a seamless user
experience [15]. Airbnb, meanwhile, makes use of the NoSQL database to accommodate large volumes of its
user-generated content. Due to the flexibility of the NoSQL database, diverse data types can easily be
iterated and stored, improving performance as well as scalability [16]. Twitter is another example which
makes use of sharing to manage user engagement. Data is distributed across multiple databases because of

The Review of Contemporary Scientific and Academic Studies
An International Multidisciplinary Online Journal

www.thercsas.com

ISSN: 2583-1380 Vol. 3 | Issue No. 10 | October 2023 Impact Factor: 4.736 (SJIF)

__
Building Data-Intensive Applications: Scalability, Performance and Availability
Vamsi Thatikonda and Hemavantha Rajesh https://doi.org/10.55454/rcsas.3.10.2023.004

3

which even during peak usage timings, the application remains responsive [17]. These real-time examples
shed light over the importance of scalability, performance and available in the digital landscape. Tailored
strategies need to be applied in order for the organizations to successfully navigate through challenges
ensuring optimal performance.

Tools and Technologies

Tools and technologies help manage data-intensive applications in real time. Monitoring tools including that
of Prometheus and Grafana provide real-time insights into the performance of the application, enabling
proactive issue resolution and optimization [18]. Cloud services and platforms including; AWS, Azure, and
Google Cloud, ensure that the infrastructure of the application remains callable and services are easily
managed to be deployed easily, providing scaling and availability management. These platforms ensure
agility since they take off the burden of hardware provision and maintenance [19]. Containerization is
another strategy, which collectively with other tools such as Docker and orchestration platform Kubernetes,
help streamline the deployment of the application irrespective of the environment. It helps in ensuring a
consistent behavior and efficient resource utilization, simplifying how data is distributed across the system
[19]. These technologies therefore act as a support towards organizations to build, deploy and maintain data-
intensive applications effectively.

Best Practices

Agile methodologies including Scrum and Kanban are widely used to facilitate iterative development as it
enables the teams to adapt swiftly towards the changing requirements of the market, and optimize their
features for scalability, performance and availability [21]. Load testing and performance tuning are used by
industry wide experts to ensure the readiness of the application despite the varying workload. Testing the
application consistently helps identify bottlenecks, resource limitations and potential failure points in the
system which helps make proactive adjustments in the system to improve efficiency and responsiveness [4].
Nagios and New Relic tools help tracking the health and performance of the system in real time based on
which swift response plans can be made. These plans are found on informed insights helping to mitigate
potential disruptions [22]. Regular drills can also be considered to view the response process from another
angle, reducing on downtime and data loss.

Conclusion

There is a symbiotic relationship between scalability, performance and availability which forms the
foundation of any data-intensive application. These concepts should not only be given technical importance
but should also be considered important for delivering a smooth and seamless user experience, which ensures
the success of the business. However, as technology tends to evolve, it is important to adopt continuous
adaptation. The right balance should be achieved between these elements to ensure that the applications
thrives in a dynamic market as well, accommodating changing demands of the market as well as proving to
be a strong competitive edge.

References

[1] R. Sankar, "What Are Data-Intensive Applications?," Single Store Blog, 2 June 2022. [Online]. Available:
https://www.singlestore.com/blog/what-are-data-intensive-applications/. [Accessed 30 August 2023].

[2] O'Reilly Media, "Chapter 1. Reliable, Scalable, and Maintainable Applications," O'Reilly Media, [Online].
Available: https://www.oreilly.com/library/view/designing-data-intensive-applications/9781491903063/ch01.html.
[Accessed 30 August 2023].

[3] A. Watt, "Chapter 13 Database Development Process," BC Campus, 2014. [Online]. Available:
https://www.google.com/search?q=Storage+becomes+constraint+when+dealing+with+large+volumes+of+data+on+a+
daily+basis%2C+accompanied+by+retrieval+and+processing+operations+as+well&sca_esv=561558033&bih=657&bi
w=1366&hl=en&sxsrf=AB5stBj7JP1XNY3N8tsYqUpx_fhgph. [Accessed 30 August 2023].

[4] LoadView, "Load Testing: Concurrent HTTP," LoadView, 29 July 2020. [Online]. Available: Increased
concurrent requests strains resources, resulting in a slow response time and frustrated users. It . [Accessed 30 August
2023].

The Review of Contemporary Scientific and Academic Studies
An International Multidisciplinary Online Journal

www.thercsas.com

ISSN: 2583-1380 Vol. 3 | Issue No. 10 | October 2023 Impact Factor: 4.736 (SJIF)

__
Building Data-Intensive Applications: Scalability, Performance and Availability
Vamsi Thatikonda and Hemavantha Rajesh https://doi.org/10.55454/rcsas.3.10.2023.004

4

[5] G. McCauley, "Top 7 Reasons for Network Downtime & What to Do About It," ExterNetworks, 1 September
2021. [Online]. Available: https://www.extnoc.com/blog/reasons-for-network-downtime/. [Accessed 30 August 2023].

[6] C. Slingerland, "Horizontal Vs. Vertical Scaling: How Do They Compare?," Cloud Zero, 5 March 2023.
[Online]. Available: https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling. [Accessed 30 August 2023].

[7] LinkedIn, "What are the benefits and challenges of horizontal scaling in microservices?," LinkedIn, 2023.
[Online]. Available: https://www.linkedin.com/advice/0/what-benefits-challenges-horizontal-scaling-microservices.
[Accessed 30 August 2023].

[8] ProgressKemp, "Load Balancing Algorithms and Techniques," ProgressKemp, [Online]. Available:
https://kemptechnologies.com/load-balancer/load-balancing-algorithms-techniques. [Accessed 30 August 2023].

[9] Geek for Geek, "The Role of Algorithms in Computing," Geek for Geek, [Online]. Available:
https://www.geeksforgeeks.org/the-role-of-algorithms-in-computing/. [Accessed 30 August 2023].

[10] U. Mansoor, "Caching Strategies and How to Choose the Right One," Code Ahoy, 11 August 2017. [Online].
Available: https://codeahoy.com/2017/08/11/caching-strategies-and-how-to-choose-the-right-one/. [Accessed 30
August 2023].

[11] APIwiz, "Benefits of Asynchronous APIs," APIwiz, 14 June 2023. [Online]. Available:
https://www.linkedin.com/pulse/benefits-asynchronous-apis-apiwizio/. [Accessed 30 August 2023].

[12] Rivery, "The Story of Data Replication: Why Your Business Needs It," Rivery, [Online]. Available:
https://rivery.io/data-learning-center/data-replication/. [Accessed 30 August 2023].

[13] M. Smallcombe, "SQL vs NoSQL," Integrate.io, 12 Jan 2023. [Online]. Available:
https://www.integrate.io/blog/the-sql-vs-nosql-difference/. [Accessed 30 August 2023].

[14] LinkedIn, "How do you balance the load and distribute the data across multiple shards?," LinkedIn, [Online].
Available: https://www.linkedin.com/advice/1/how-do-you-balance-load-distribute-data-across-multiple. [Accessed 30
August 2023].

[15] K. Varshneya, "Understanding design of microservices architecture at Netflix," techahead, 15 December 2021.
[Online]. Available: https://www.techaheadcorp.com/blog/design-of-microservices-architecture-at-netflix/. [Accessed
30 August 2023].

[16] DataStax, "Real-World NoSQL Database Use Cases: Examples and Use Cases for Developers," DataStax,
[Online]. Available: https://www.datastax.com/guides/nosql-use-cases. [Accessed 30 August 2023].

[17] Engineering, "The Infrastructure Behind Twitter: Scale," Engineering, 19 January 2017. [Online]. Available:
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2017/the-infrastructure-behind-twitter-scale. [Accessed
30 August 2023].

[18] Grafana Labs, "What is Prometheus?," Grafana Labs, [Online]. Available: https://grafana.com/docs/grafana-
cloud/introduction/prometheus/. [Accessed 30 August 2023].

[19] J. Lorandi, "The Ultimate Guide: An Introduction to Cloud Computing Services," Azumo, 10 February 2023.
[Online]. Available: https://azumo.com/insights/comparing-amazon-web-services-vs-google-cloud-vs-microsoft-azure.
[Accessed 30 August 2023].

[20] Vmware, "What is a containerization strategy?," Vmware, [Online]. Available:
https://www.vmware.com/topics/glossary/content/containerization-strategy.html. [Accessed 30 August 2023].

[21] K. Brush, "Agile software development," TechTarget, November 2022. [Online]. Available:
https://www.techtarget.com/searchsoftwarequality/definition/agile-software-development. [Accessed 30 August 2023].

[22] New Relic, "Nagios monitoring integration," New Relic, [Online]. Available:
https://docs.newrelic.com/docs/infrastructure/host-integrations/host-integrations-list/nagios-monitoring-integration/.
[Accessed 30 August 2023].

Conflicts of Interest: The authors declare no conflict of interest.

