Structured Linear Algebra
 Dr. Moumouni DJASSIB0 WOBA (moumouniabdoulwoba@gmail.com)
 Université de Ouahigouya, Burkina Faso

Abstract

Copyright: © 2024 by the authors. Licensee The RCSAS (ISSN: 2583-1380). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution Non-Commercial4.0 International License.(https://creativecommons.org/licenses/by-nc/4.0/).Crossref/DOI:https://doi.org/10.55454/rcsas.4.03.2024.003

Abstract: Matrices with a special structure are omnipresent in computer algebra. These are matrices whose elements enjoy a certain repetition, or satisfy certain relationships. More formally, a structured $n \times n$ matrix is typically defined by elements $O(n)$, instead of $n^{\wedge} 2$ for a dense matrix, and can be multiplied by a vector in $\tilde{O^{(}(n)}$ arithmetic operations, instead of operations $O\left(n^{\wedge} 2\right)$ for a dense matrix. This article presents a unified algorithm for handling dense structured matrices, such as Toeplitz, Hankel, Vandermonde and Sylvester matrices. Calculations with matrices of these classes are linked to calculations with polynomials, which allows the use of fast polynomial multiplication techniques to speed up their manipulation. For example, we can solve a linear system defined by an invertible structured matrix in $\tilde{O^{(}(n) \text { operations. }}$

Keywords: Algebra, Algorithm, Computer Algebra, Matrices, , Polynomials, Structured Matrix
Article History: \quad Received: 14 March- 2024; Accepted: 25 March- 2024; Published/Available Online: 30March- 2024

1. Introduction

It is possible to manipulate the dense matrices of sizen $\times n$ to coefficients in a body $\mathbb{K i n M M}(\mathrm{n})=$ $\mathrm{O}\left(n^{\theta}\right)$ opérations in \mathbb{K}, where θ is based on 2 and 3 . Here, to handle, we intend to multiply, reverse, calculate the determinant, or solve a linear system. In some situations, the matrices that are handled in handles show a structure that these general algorithms do not know how to detect and exploit (Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, 2009).

1.1. Definition

Amatrix $A \in M_{n}(\mathbb{K})$ is called Toeplitz (or simply Toeplitz) if it is invariant along diagonals, that is to say if its elements $a_{i, j}$ verification $a_{i, j}=a_{i+k, j+k}$ for all k.

Such a matrix is completely defined by its first line and its first column.

1.2. Definition

A matrix $A \in M_{n}(\mathbb{K})$ is called Hankel if sche is invariant along the ant-diagonal, that is to say if its elements $a_{i, j}$ verified $a_{i, j}=a_{i-k, j+k}$ for everything k.

Such a matrix iscompletrly denied by its first line and last column. (Bostan, Alin, Claude-Pierre Jeannerod et Éric Schost, 2008)

1.3. Example

The matrix of polynomial multiplication in fixe degree (in canonical bases) by a fixe polynoma is Toeplitz. There is also the specialized Toeplitz matrix, called tape. In fact, all Toeplitz matrix can be seen as a subdirator of a Toeplitz tape matrix, and this causes the next lemme (1.4 Lemme).

1.4. Lemme

The product of a Toeplitz (or Hankel) matrix of $M_{n}(\mathbb{K})$ by a vectorK \mathbb{K}^{n} can be done inO(M(n)) operation.
Demonstration. For all $0 \leq \mathrm{i} \leq \mathrm{n}-1$, the element of the matrix-vector product.

$$
\left(\begin{array}{ccc}
a_{n-1} & \ldots & a_{0} \\
\vdots & \ddots & \vdots \\
a_{2 n-2} & \ldots & a_{n-1}
\end{array}\right) \times\left(\begin{array}{c}
b_{0} \\
\vdots \\
b_{n-1}
\end{array}\right)=\left(\begin{array}{c}
c_{0} \\
\vdots \\
c_{n-1}
\end{array}\right)
$$

Is the coefficient $X^{\mathrm{n}-1+\mathrm{i}}$ from the polynomium product

$$
\left(a_{0}+\cdots+a_{2 \mathrm{n}-2} X^{2 \mathrm{n}-2}\right) \times\left(b_{0}+\cdots+b_{\mathrm{n}-1} X^{\mathrm{n}-1}\right)
$$

The evidence is quite similar for a Hankel matrix. Previous evidence shows that $2 M(n)+O(n)$ sufuses operations smell to multiply a matrix of Toeplitz or Hankel of size n by a vector. The terminal can be reduced $\operatorname{toM}(\mathrm{n})+\mathrm{O}(\mathrm{n})$, observing that the extraction of the median part of the product is sufhi.

1.5. Example

A Sylvester matrix is the concatenation of two dish mattresses Toeplitz band.

1.6. Definition

A matrix $A=\left(a_{\mathrm{i}, \mathrm{j}} \mathrm{j}_{\mathrm{i}, \mathrm{j}=0}^{\mathrm{n}-1}\right.$ de $M_{n}(\mathbb{K})$ is called de Vandemonde if his elements are writing.
$a_{\mathrm{i}, \mathrm{j}}=a_{i}^{j}$ to $a_{0}+\cdots+a_{\mathrm{n}-1} \in \mathbb{K} .($ Pan, Victor Y. 2001)

1.7. Definition

A matrix $A=\left(a_{\mathrm{i}, \mathrm{j}} \mathrm{j}_{\mathrm{i}, \mathrm{j}=0}^{\mathrm{n}-1}\right.$ de $M_{n}(\mathbb{K})$ if called Cauchy if his elemnts are $a_{\mathrm{i}, \mathrm{j}}=1 /\left(a_{i}-b_{j}\right)^{\text {to }} a_{i}, b_{j} \in \mathbb{K}$ avec $a_{i} \neq b_{j}$ for alli, j.
There are a number of points in common between these

1.8. Examples:

The matrix is representative by elements $O(n)$; the matrix-vector product may be faster than in the generic case, in $\mathrm{O}(\mathrm{M}(\mathrm{n}) \operatorname{logn})$ operations instead ofO $\left(n^{2}\right)$; the by any matrix may be completed in almost the optimal complexity $\mathrm{O}(\mathrm{nM}(\mathrm{n}) \operatorname{logn})$ in the size of the output for a polynomial multiplication based on FFT. Indeed, in each case, the matrix-vectorA v product admits an analytical interpretation:

- polynomial multiplication in the case Toeplitz, Hankel and Sylvester;
- Polynomial multipoint evaluation in the case of a Vandermondematrix;
— Multipoint valuation of rational fractions of the form $\sum_{j=0}^{n-1} c_{j} /\left(X-b_{j}\right)$ in the case of a Cauchy matrix.
In view of these examples, we could therefore be tempted to define as structured a matrix such as its product by a vector can be done in $\tilde{O}(n)$ operations. The question that is naturallybeing: is perhaps this definition of the structure of A to solve the systemAx $=\mathrm{b}$? A first positive finding is that in each of the previous examples, the resolution also admits an analytical interpretation:
i. Recovering grocery of coefficients censive constants, if A of Toeplitz or Hankel;
ii. Polynomial interpolation, if Ais Vandermonde;
iii. Interpolationof rational fractions, if Ais Cauchy.

Indeed, if the following $\left(a_{n}\right)$ of elements of \mathbb{K} verifying a recurrence (unknown) to coefficients constant frequently the shape $a_{n+d}=p_{d-1} a_{n+d-1}+\cdots+p_{0} a_{n}, n \geq 0$,so find the coefficients p_{i} of this recurrence is to solve the Hankel system.
Another encouraging point is that for these three operations, almost alternatives algorithms that are almost optimalO(M(n)logn). There are, however, some negative points: a first is that if Ait is an invertible matrix such as the linear application $v \rightarrow A v$ calculate in L operations, this does not imply the existence of an algorithm of complexity $\mathrm{O}(\mathrm{L})$ for the application $v \rightarrow A^{-1} v$. In other words, there is a lack of a reliability principle analogous to the transposition principle. For example, for hollow matrices, the best resolution algorithm, due to Wiedemann, is quadratic complexity inn. A second negative point is that the classes views above are not stable by reversal: the reverse of a dress of Toeplitz (Vandermonde) is not Toeplitz (Vandermonde). It is therfore necessary to add hypotheses in the definition of the correct concept of structured matrix. This definition exploits the generalization of the diagonal invariant character of a Toeplitz matrix, and comes from simple observation: if A is to Toeplitz, then the matrix $\varphi(\mathrm{A})=\mathrm{A}-$ (A décalée de 1 vers le bas et de 1 vers la droite) admits a nurture square sub-matrix of less than one; it is therefore ranked no more than one (we agreed to fill with zeros the first line and column of the shfted matrix). It is said that φ a moving operator and the movement of movement over to be more than.

It can be represented $\varphi(\mathrm{A})$ in compact form, like a product $G .{ }^{t} H$, withG et H rectangular size mattersn $\times 2$. (Morf, M. 1980)

1.9. Example

If A is the matrix 3×3

$$
\begin{gathered}
\left(\begin{array}{lll}
c & d & e \\
b & c & d \\
a & b & c
\end{array}\right) \text {, avec } d \neq 0 \text {, so } \varphi(A) \text { written } \\
\varphi(A)=\left(\begin{array}{lll}
c & d & e \\
b & c & d \\
a & b & c
\end{array}\right)=\left(\begin{array}{ll}
c & d \\
b & 0 \\
a & 0
\end{array}\right) \times\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & e / d
\end{array}\right)
\end{gathered}
$$

1.10. Definition

The matrices (G, H) de $M_{\mathrm{n}, 2}(\mathbb{K})$ telles que $\varphi(\mathrm{A})=G .{ }^{t}$ Hare called motion generators for the Toeplitz A matrix.

These definitions extend to any matrix and lead to the concept of quasi-Toeplitz matrix.

1.11. Definition

More generally displacement operator φ_{+}application
$A \rightarrow A-Z . A .{ }^{t} Z$, where A is any matrix and Z the matrix define by

$$
Z=\left(\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \cdots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right) .
$$

ZA is the matrix A shifted from 1 line down, et $A .^{t} Z$ is the matrix A shifted from 1 column to the right, so well found the previous denial for dish of Toeplitz.The rankof emerging movementAas previously the whole $\alpha_{+}(\mathrm{A})=\operatorname{rang}(\varphi+(\mathrm{A}))$.
It is also called a movement generator for the operator φ_{+}a couple (G, H) of matrices $n \times \alpha$ verial equality $\varphi_{+}(\mathrm{A})=G .{ }^{t} \mathrm{H}$. Si $\alpha_{+}(\mathrm{A}) \ll \mathrm{n}$, It is said that A is quasi-Toeplitz>>. The whole $\alpha_{+}(\mathrm{A})$ is called length of the generator(G, H). (Gohberg, I. et V. Olshevsky, 1994).
N.B.The index+is introduced to do during a subsequent index used later.

Intuitively, the rank of movement measures how the matrice A is far from being Toeplitz or a concatenation of Toeplitz.

1.12. Example

The Toeplitz and Sylvester matrices are quasi-Toeplitz, of travel deck 2. Another extension makes it possible to define quasi-vandarmond and quasi-cauchy matrices, but for different displacement operators.
Rapid algorithms for structured mark structured matrices is the use of travel generators as a compact α structure of $\operatorname{sizeO}(\alpha \mathrm{n})$, therefore proportional to the size of the matrix, in the case wher $\alpha \leq n$. (Pan, Victor 1990).
1.13. Theorem (Cadre quasi-Toeplitz, quasi-Vandermonde, quasi-Cauchy).

Either α the rankof adequate displacement, A a matrix of $M_{n}(\mathbb{K})$ given by movement generators size $\mathrm{n} \times \alpha$, and eitherba vector of \mathbb{K}^{n}. So, it is possible to :
a) Calculate the determinant of A;
b) Calculate the rank of A;
c) Calculate a solution of the system $\mathrm{Ax}=\mathrm{b}$, or prove that there is no in $\tilde{O}\left(\alpha^{2} n\right)$ operations in \mathbb{K}. More exactly, this complexity is expressed in terms of the polynomial multiplication function, and is worth:

1. $\mathrm{O}\left(\alpha^{2} \mathrm{M}(\mathrm{n}) \log \mathrm{n}\right)$ in thecas quasi-Toeplitz ;
2. $\mathrm{O}\left(\alpha^{2} \mathrm{M}(\mathrm{n}) \log ^{2} \mathrm{n}\right)$ in the almost quasi-Vandermondeand quasi-Cauchy.

This theorem has a constitutional uniberenic algorithmic to solve in almost complexity problems with the polynomials and series. (Pan, Victor Y. Et Ailong Zheng 2000).

1.14. Corollary

We can calculate inO(M(n)log n) arithmetic transactions:

1. The extended PGCD and the resulting of two polymades of degree bounded by n;
2. A romantic of pady type (n, n) of a primed truncated series $2 n$.

Demonstration.

The resulting of two polynomialsA, $\mathrm{B} \in \mathbb{K}[\mathrm{X}]$ is getting as determining the Sylvester matrixSyl(A, B), who has a rank of movement over the position 2 . The degree ofpgcd (A, B) is obtained by a calculation of the rank of thematrix of Sylvester:

$$
\operatorname{deg}(G)=\operatorname{deg}(A)+\operatorname{deg}(B)-\operatorname{rank}(\operatorname{Syl}(A, B))
$$

Once known the degree of the PGCD, relationship of BézoutUA $+V B=G$, with the contraintsdeg $(U)<$ $\operatorname{deg}(B)-\operatorname{deg}(G)$ et $\operatorname{deg}(V)<\operatorname{deg}(A)-\operatorname{deg}(G)$, translates into a linnaer system in thecoefficientde U, V et G, whose matrix is a concatenation of three Toeplitz matrix, so a quasi-Toeplitz matrixof movement of more movement. Similar considerations apply for the calculation of approximate of Padé. (Cardinal, Jean-Paul, 1999).

1.15. Corollary

Being n series f_{1}, \ldots, f_{n} of $\mathbb{K}[[\mathrm{X}]]$ known to precision $\sigma=\sum_{i}(\mathrm{di}+1)-1$, it is possible to calculate an approximation ofPadé-Hermite $\left(p_{1}, \ldots, p_{n}\right)$ of type $\left(d_{1}, \ldots, d_{n}\right)$ in $\mathrm{O}\left(n^{2} \mathrm{M}(\sigma) \log \sigma\right)$ operationsin \mathbb{K}.

Demonstration.

This is a linear problem in the coefficient of the approximation. The matrix is almost in even it, from marked mock terminated byn.(Kailath, T., S. Y. Kung et M. Morf, 1979).

2. Quasi-Toeplitz Case

In the following, we will focus only on the case of quasi-Toeplitz because it contains the main algorithmic ideas, and it covers many of the applications; the quasi-vandarmond and quasi-cauchy cases are reluctant and are more technical. We will show that the concept of matrix quasi-Toeplitz is a good concept of structure, as it meets the following properties:
(P1) The product of a quasi-Toeplitz matrix is found, if not, and the vector is essentially the ester; (P2) the sum and the product of two quasi-Toeplitz matrices remain almost quasi-Toeplitz;
(P3) l'inverse auss. (Bitmead, Robert R. Et Brian D. O. Anderson 1980).
However, these properties form the minimum required to design a stere-reversed algorithm in the compact representation by movement generator.

3. Matrix-Vectorproduct, Quasi-Toeplitz Case

To show the property (P 1) above, the key point is the following.

3.1. Proposition

Formula $\Sigma \mathrm{LU}$. The operator $\varphi_{+}: A \mapsto A-Z . A .{ }^{t} Z$ isinvertible. More exactly we have the following formula, called formula $\Sigma \mathrm{LU}$:
$A-Z . A \cdot{ }^{t} Z=G \cdot{ }^{t} H$ if and only if $A=\sum_{i=1}^{\alpha} L\left(x_{i}\right) \cdot U\left(y_{i}\right)$, where the x_{i} (resp. y_{i}) are the generator columnsG (resp. H), and where, for a column vector $v=^{t}\left[v_{0} \ldots v_{n-1}\right]$, we are notedL(v) the folwer triangular Toeplitz matrix

$$
\left(\begin{array}{cccc}
v_{0} & 0 & \cdots & 0 \\
v_{1} & v_{0} & \cdots & 0 \\
\vdots & \ddots & \cdots & \vdots \\
v_{n-1} & \cdots & v_{1} & v_{0}
\end{array}\right)
$$

and $U(v)$ the triangular sudden Toeplitz matrix ${ }^{t} L(v)$.
Demonstration.
By linearity, he sufed to treat the $\cos \alpha=1$. ifC $=\mathrm{L}(\mathrm{a}) \mathrm{U}(\mathrm{b})$, then an immediate calculation shows that
$c_{i, j}=a_{i} b_{j}+a_{i-1} b_{j-1}+\cdots$, and $\operatorname{so} c_{i, j}-c_{i-1, j-1}=a_{i} b_{j}$ et $\varphi_{+}(C)=\left(a_{i} b_{j}\right)_{i, j=0}^{n-1}=a .^{t} b$.
The reverse involvement is due to the injectivity of φ_{+}.
(Brent, Richard P., Fred G. Gustavson Et David Y. Y. Yun, 1980. Gustavson, Fred G. Et David Y.Y. Yun, 1979).

3.2. Definition

The number $\alpha_{+}(\mathrm{A})$ is the smallest whole arethere is a decomposition of the form.

$$
A=\sum_{i=1}^{\alpha} L_{i} U_{i}
$$

for matrices L_{i} of Toeplitz lower, and U_{i} of Toeplitz higher. (Levinson, Norman, 1947)

3.3. Example

If A is of Toeplitz, so by noting $A_{\text {inf }}$ its lower part and $A_{\text {ssup }}$ its strictly superior part, it is that A admitsthe decomposition $A=A_{\text {inf }} \cdot I_{n}+I_{n} \cdot A_{\text {ssup }}$, so α_{+}(A) ≤ 2 (Trench, William F. ,1964).

3.4. Corollary

If A is given in compact representation by a pair of movement generator (G, H) of sizen $\times \alpha$, then the matrixvector productAv can be performedO $(\alpha \mathrm{M}(\mathrm{n}))$ arithmetic operations.

Demonstration.

The productAv written as the sum of α terms, all of the form $L\left(x_{i}\right)\left(U\left(y_{i}\right) v\right) \mathrm{L}(\mathrm{xi})(\mathrm{U}(\mathrm{yi}) \mathrm{v})$. however, each of these an be calculatedO(M(n)) operations. (Golub, Gene H. Et Charles F. Van Loan, 2013)
3.5. Proposition (Matrix operations in compact representation).

Either (T, U) length displacacement generator α for A, and (G, H) generator of length β for B. So

1. $([T \mid G],[\mathrm{U} \mid \mathrm{H}])$ are displacement generators forA +B length $\alpha+\beta$;
2. ($[\mathrm{T}|\mathrm{W}| \mathrm{a}],[\mathrm{V}|\mathrm{H}|-\mathrm{b}]$) are displacement generators for AB , length $\alpha+\beta+1$, où $\quad V:={ }^{t} B . U, W:=$ $A .^{t} Z . G$, and where the vector a (resp. b) is the last column ofZ. A (resp. de $Z .^{t} B$). (Gohberg, I. C. Et A. A. Semencul, 1972)

3.6. Corollary

In compact representation by displacement generators, of lengths at mostafor Aet B , we can calculate
1The sumA + B inO (α n)operationsinK ;
2. The productAB inMul $(\mathrm{n}, \alpha):=\mathrm{O}\left(\alpha^{2} \mathrm{M}(\mathrm{n})\right)$ operations in \mathbb{K}.

Demonstration.

The only non-trivial point is the calculation of the matrices V and W and vectorsa and b. Everything is resting on the formula $\Sigma L U$. If B written $\sum_{i=1}^{\beta} L\left(x_{i}\right) U\left(y_{i}\right)$, then his transposwritten ${ }^{\mathrm{t}} B=\sum_{i=1}^{\beta} L\left(y_{i}\right) U\left(x_{i}\right)$, and the calculation $\operatorname{of} V={ }^{\mathrm{t}} B . \mathrm{U}$ gets back to $2 \alpha \beta$ polynomial multiplications, each that may be figured
$\operatorname{inO}(M(n))$. The same reasoning applies to the calculation of W. finally, the calculationofais returned to multiply A by the column ${ }^{\mathrm{t}}[0, \ldots, 0,1]$ and similar purpose for b allows you to conclude. (Kaltofen, Erich, 1994)

3.7. Definition

The operator φ_{-}of moving a matrix A of $M_{n}(\mathbb{K})$ is defiated by equality
$\varphi_{-}(A)=A^{-t} Z \cdot A \cdot Z=$ A-(Ashifted from 1 up and left). The rankof travel α_{-}is defined nom by the formula $\varphi_{-}(A)=\operatorname{rang}\left(\varphi_{-}(A)\right)$. We can show (in the same way as for φ_{+}) that is equivalent to the equity of φ_{-}, and that φ_{+}and φ_{-}are linked.(Kaltofen, Erich, 1995)

Conclusion

The first quadratic complexity algorithm for the resolution of a liner system whose matrix is of Toeplitz, symmetrical and positive deficiency. Subsequently, it has been shown that the opposite of such a matrix can be calculated in the same complexity.
The Trench balic algorithm is based on a formulaELU two terms of the reverse of matrix, the summaries being built from the first line and the first column of A^{-1}. Brent, Gustavsonand Yunshowed how to reduce the calculation of the first line and column of A^{-1} at a copound of approximation of padé. They also highlighted the deep links between resolution of Toeplitz systems, the extended algorithm and the approximation of padé, and proposed the first algorithm for the resolution of a system definition by wrestling inverse Toeplitz matrix sizen in $O(M(n) \operatorname{logn})$ arithmeticsoperations.
At the same time, the concept of travel mark was introduced by Kailath, Kung and Morf, to be able to resolve a reverse quasi-Toeplitz system of traveloin cost $\mathrm{O}\left(\alpha n^{2}\right)$.Quick versions of complexity $\mathrm{O}\left(\alpha^{d} \mathrm{M}(\mathrm{n}) \operatorname{logn}\right)$ were obtained independently by Bitmead and Anderson (withd $=4$) and Morf (with $\mathrm{d}=2$.Under assumptions of high regularity on entry. These assumptions were then lifted by Kaltofen. Quasi-Cauchy case extensions are due to cardinal. The Quasi-Vandermondecase is treated in Pan, and Gohberg and Olshevsky items. The best asymptotic complexity visualizes simultaneously on the size of the matrix and its travel mark is due to Bostan, Jeannerod and Schost, who found how to introduce rapid product of dense matrices in the algorithmic of structured matrices, and reduced the cost to $\tilde{O}\left(\alpha^{\theta-1} n\right)$ for the resolution of the quasi-toeplitz, quasi-vandermond and quasi-cauchy systems. A good reference on the structured matrics is the Pan book.

Bibliography

BITMEAD, Robert R. et Brian D. O. ANDERSON (1980). «Asymptotically fast solution of Toeplitz and related systems of linear equations». In : Linear Algebra and its Applications, vol. 34, p. 103-116.
BOSTAN, Alin, Claude-Pierre JEANNEROD et Éric SCHOST (2008). «Solving structured linear systems with large displacement rank». In : Theoretical Computer Science, vol. 407, n 1 1-3, p. 155-181.

BRENT, Richard P., Fred G. GUSTAVSON et David Y. Y. YUN (1980). «Fast solution of Toeplitz systems of equations and computation of Padé approximants». In : Journal of Algorithms, vol. 1, n०3, p. 259-295.

CARDINAL, Jean-Paul (1999). «On a property of Cauchy-like matrices». In : Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, vol. 328, n11, p. 1089-1093.
GOHBERG, I. C. et A. A. SEMENCUL (1972). «On the inversion of finite Toeplitz matrices and their continuous analogues (in Russian) ». In: MatematicheskieIssledovaniya, vol. 7, n०2, p. 201-223.

GOHBERG, I. et V. OLSHEVSKY (1994).«Complexity of multiplication with vectors for structured matrices». In: Linear Algebra and its Applications, vol. 202, p. 163-192.

GUSTAVSON, Fred G. et David Y.Y. YUN(1979).«Fast algorithms for rational Hermite approximation and solution of Toeplitz systems ». In : IEEE Transactions on Circuits and Systems, vol. 26, n॰9, p. 750-755.
GOLUB,GeneH. etCharlesF.VAN LOAN (2013).Matrixcomputations.Fourth. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD.

KAILATH, T., S. Y. Kung et M. Morf (1979). «Displacement ranks of a matrix». In : American Mathematical Society. Bulletin. New Series, vol. 1, n5, p. 769-773.

KAILATH, Thomas, Sun Yuan Kung et Martin Morf (1979). «Displacement ranks of matrices and linear equations ». In : Journal of Mathematical Analysis and Applications, vol. 68, n $\circ 2$, p. 395-407.

KALTOFEN, Erich (1994). «Asymptotically fast solution of Toeplitz-like singular linear systems». In : ISSAC'94 : International Symposium on Symbolic and Algebraic Computation. Oxford, United Kingdom : ACM Press, p. 297-304.

KALTOFEN, Erich(1995). «Analysis of Coppersmith’s block Wiedemann algorithm for the parallel solution of sparse linear systems». In: Mathematics of Computation, vol. 64, n²10, p. 777-806.

LEVINSON, Norman (1947). «The Wiener RMS (root mean square) error criterion in filter design and prediction». In : Journal of Mathematics and Physics, vol. 25, p. 261-278.

MORF, M. (1980) «Doubling algorithms for Toeplitz and related equations». In : IEEE Conference on Acoustics, Speech, and Signal Processing, p. 954-959.

PAN, Victor (1990)« On computations with dense structured matrices». In : Mathematic of computation, vol. 55, n° 191, p. 179-190.

PAN, Victor Y. et Ailong ZHENG (2000). «Superfast algorithms for Cauchy-like matrix computations and extensions» In: Linear Algebra and its Applications, vol. 310, n° 1-3, p.83-108.

PAN, Victor Y. (2001). Structured matrices and polynomials. Unified superfast algorithms. Birkhäuser Boston Inc.
Thomas H. Comen, Charles E. Leiserson, Ronald L.Rivest et CluffordStein,Introduction to Algorithms, MIT Press, $2009\left(3^{\mathrm{e}}\right), 1292 \mathrm{p}$.

TRENCH, William F. (1964). «An algorithm for the inversion of finite Toepltz matrices ». In: Journal of the Society for Industrial and Applied Mathematics, vol. 12, p. 515-522

